

MAO-003-001618 Seat No. _____

Third Year B. Sc. (Sem. VI) (CBCS) Examination

March / April - 2018

Mathematics: BSMT-603(A)

(Optimization & Numerical Analysis-II)

Faculty Code: 003 Subject Code: 001618 Time : $2\frac{1}{2}$ Hours] [Total Marks: 70 Instructions: (1) All questions are compulsory. (2)Figures to the right indicate full marks. 1 Answer the following objective type questions briefly 20 in your answer-book: (1) The linear function in any LPP that is to be optimized is called _____. What is Hyperplane? (2)Define Convex Hull. (3)

- (4) What is slack variable?
- (5) Write the Standard form of Linear Programming Problem.
- (6) Which method helps in comparing the relative advantage of alternative allocations for all the unoccupied cells simultaneously to solve transportation problem?
- (7) Which three methods are used to obtain an initial solution of transportation problem ?

(8) Allocate in the second row of the following transportation problem by NWCM:

44.444.0 4 symmetry		To Des	Suppi	
		WI	W 2	
From	FI	2	7	5
Origin	FI .	3	3	8
	F3	\$.4	3
Demasd		7	- Q	16

- (9) What is Assignment Problem? Explain in very brief.
- (10) Which method of Operations Research was developed by a mathematician D. Konig ?
- (11) Which difference interpolation formulae are most suitable?
- (12) Write Gauss's forward interpolation formula.
- (13) When the concept of divided difference is used?
- (14) Write the relation between divided differences and forward differences.
- (15) If $f(x) = x^3 2x$ then find f(2,4,9,10).
- (16) The formula to find $\int_a^b y dx$ is called ______.

(17)
$$\int_{x_0}^{x_0+nh} y dx = h \left[\frac{y_0 + y_n}{2} + y_1 + y_2 + \dots + y_{n-1} \right]$$
 is known as _____ Rule.

- (18) Write the formula to find the value of $\int_2^6 \frac{dx}{x}$ by trapezoidal rule.
- (19) State Simposon's $\frac{3}{8}$ Rule to find the value of $\int_{2}^{6} \frac{dx}{x}$.
- (20) What is the range of p for which the Gauss's backward interpolation formula is useful?

2 (A) Attempt any three:

6

- (1) Define:
 - (i) Optimum solution of Linear Programming Problem.
 - (ii) Unbounded solution (w.r.t. Linear Programming Problem).
- (2) Find the dual of the following primal linear programming problem:

Maximize $z = 3x_1 + 5x_2 + 4x_3$ subject to $2x_1 + 3x_2 + 0x_3 \le 8$,

$$0x_1 + 2x_2 + 5x_3 \le 10$$
, $3x_1 + 2x_2 + 4x_3 \le 15$ and $x_1, x_2, x_3 \ge 0$

- (3) State the Fundamental Theorem of Linear Programming.
- (4) Write full form of LCM and NWCM.
- (5) Write General Mathematical form of Assignment Problem.
- (6) Define: Optimal solution of transportation problem. Write full form of B.F.S.
- (B) Attempt any **Three**:

9

(1) Obtain the <u>INITIAL</u> solution of given transportation problem using <u>LCM method</u>:

			Summit			
		D ₁	\mathbf{D}_2	D ₃	D_4	Supply
-	P	2	3	11	7	6
FROM	P ₂	1	0	6	1	
Ξ	P3	5	8	15	9	10
	nand	7	5	3	2	

(2) Obtain the Initial solution of the above transportation problem using VAM.

(3) Obtain the dual of the following:

Minimize

$$Z = x_1 + 2x_2$$

Subject to

$$2x_1 + 4x_2 \le 160$$
, $x_1 = x_2 = 30$, $x_1 \ge 10$ and $x_1, x_2 \ge 0$.

- (4) Explain the steps of the <u>GRAPHICAL</u> method to solve the Linear Programming Problems.
- (5) Explain the steps of **The Big-M Method**.
- (6) Write summary of the general relationship between primal and dual LP Problems.
- (C) Attempt any two:

10

- Explain steps of <u>Hungarian method</u> to solve the <u>Assignment Problem</u>.
- (2) Find the $\underline{OPTIMUM}$ solution of given $\underline{ASSIGNMENT\ PROBLEM}:$

			Job					
		1	2	3	4	5		
	A	8	4	2	6	1		
Men	В	0	9	5	5	4		
	С	3	8	9	2	6		
	D	4	3	ı	0	3		
	E	9	5	8	9	5		

(3) Obtain the <u>OPTIMUM</u> solution of given <u>Transportation Problem</u> using <u>MODI</u> method:

		Destination					
		S	S 2	S 3	S 4	Supply	
	O;	21	16	25	13	11	
Origin	O ₂	17	18	14	23	13	
0	O ₃	32	27'	18	41	19	
Den	nand	6	10	12	15	43	

(4) Find <u>ONLY BFS</u> and construct <u>ONLY FIRST</u>

<u>TABLE</u> to solve the following LPP using <u>SIMPLEX</u>

<u>METHOD</u> (complete solution is not required)

Maximize
$$Z = 2x_1 + 5x_2 + 7x_3$$

subject to the

constraints:
$$3x_1 + 2x_2 + 4x_3 \le 100$$
, $x_1 + 4x_2 + 2x_3 \le 100$,

$$x_1 + x_2 + x_3 \le 100$$
 and $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

(5) Obtain the dual problem of the following primal LP problem:

Minimize
$$Z_x = 5x_1 + 2x_2 + x_3$$

Subject to

$$x_1 - 3x_2 + 4x_3 = 5$$

$$x_1 - 2x_2 + 0x_3 \le 3$$

$$0x_1 + 2x_2 - x_3 \ge 4$$

and $x_1, x_2 \ge 0, x_3$ is unrestricted in sign.

3 (A) Attempt any **three**:

6

- (1) Write Lagrange's interpolation formula.
- (2) For $x_0 = 1$; $x_1 = 1$ and $x_2 = 2$ prove that sum of coefficients of Lagrange's interpolation is 1.
- (3) If f(1) = 2, f(1,3) = 13. f(1,3,6) = 10 and f(1,3,6,9) = 1 then prove that $f(x) = x^3 + 1$.
- (4) Prove that the value of any divided difference is independent of the order of the arguments.
- (5) In usual notation prove that

$$D = \frac{1}{h} \left[\Delta - \frac{1}{2} \Delta^2 + \frac{1}{3} \Delta^3 - \frac{1}{4} \Delta^4 + \dots \right].$$

- (6) Derive relation between divided differences and forward differences.
- (B) Attempt any three:

9

- (1) If $f(x) = x^3$ then find f(1,3,5,7).
- (2) Derive Simpson's 1/3 Rule.
- (3) Evaluate $\int_{0}^{10} \frac{dx}{1+x^2}$ by Simpson's $\frac{3}{8}$ Rule.
- (4) Solve $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$ by Taylor's series method.
- (5) Explain Picard's method to solve the differential equation $\frac{dy}{dx} = f(x, y), \ y(x_0) = y_0.$
- (6) Find the values of y at x = 0.2, 0.4, 0.8, 1 by Euler's method $\frac{dy}{dx} = 2x + y$, y(0) = 1.

(C) Attempt any two:

10

(1) Obtain the value of f'(90) using Stirling's formula to the following data :

х	60	75	90	105	120
f(x)	28.2	38.2	43.2	40.9	37.7

- (2) Derive Bessel's formula for central differences.
- (3) Derive Simpson's $\frac{3}{8}$ rule.
- (4) Explain Range's Method to solve differential equation.
- (5) Find a polynomial satisfied by the following table:

X	-4	-1	0	2	5
f(x)	1245	33	5	9	1335